Estimating the higher-order Randić index

dc.contributor.authorGonzalez Yero, Ismael
dc.contributor.authorRodriguez Velazquez, Juan Alberto
dc.contributor.authorGutman, Ivan
dc.date.accessioned2021-04-20T15:13:28Z
dc.date.available2021-04-20T15:13:28Z
dc.date.issued2010
dc.description.abstractLet G be a (molecular) graph with vertex set V = {v1, v2, ..., vn}. Let δ (vi) be the degree of the vertex vi ∈ V. If the vertices vi1, vi2, ..., vih + 1 form a path of length h, h ≥ 1, in the graph G, then the hth order Randić index Rh of G is defined as the sum of the terms 1 / sqrt(δ (vi1) δ (vi2), ..., δ (vih + 1)) over all paths of length h contained (as subgraphs) in G. Lower and upper bounds for Rh are obtained, in terms of the vertex degree sequence of G. Closed formulas for Rh are obtained for the case when G is regular or semiregular bipartite. © 2010 Elsevier B.V. All rights reserved.
dc.identifier.doi10.1016/j.cplett.2010.02.052
dc.identifier.issn0009-2614
dc.identifier.scopus2-s2.0-77950596261
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/10236
dc.rightsrestrictedAccess
dc.sourceChemical Physics Letters
dc.titleEstimating the higher-order Randić index
dc.typearticle

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
PaperMissing.pdf
Size:
29.86 KB
Format:
Adobe Portable Document Format