The weak asymptotic equivalence and the generalized inverse

dc.contributor.authorĐurčić, Dragan
dc.contributor.authorNikolić, Rale
dc.contributor.authorTorgašev A.
dc.date.accessioned2021-12-05T06:43:43Z
dc.date.available2021-12-05T06:43:43Z
dc.date.issued2010
dc.description.abstractIn this paper, we discuss the relationship between the weak asymptotic equivalence relation and the generalized inverse in the class A{\mathcal{A}} of all nondecreasing and unbounded functions, defined and positive on a half-axis [a,+∞) (a > 0). In the main theorem, we prove a proper characterization of the functional class ORV ÇA{{ORV} \cap \mathcal{A}} , where ORV is the class of all O{\mathcal{O}} -regularly varying functions (in the sense of Karamata). Keywordsregular variation-generalized inverse-weak asymptotic equivalence MSC26A12en_US
dc.description.versionAccepted for publishingen_US
dc.identifier.doi10.1007/s10986-010-9069-1en_US
dc.identifier.issn0363-1672en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/13782
dc.language.isoenen_US
dc.rightsopenAccess
dc.rights.licenseBY-NC-ND
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceLithuanian Mathematical Journalen_US
dc.titleThe weak asymptotic equivalence and the generalized inverseen_US
dc.typearticleen_US
dc.type.versionWorkingVersionen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2010-LMJ radna verzija.pdf
Size:
118.44 KB
Format:
Adobe Portable Document Format
Description: