A THEORY OF VARIATIONS VIA P-STATISTICAL CONVERGENCE

dc.contributor.authorDemirci, Kamil
dc.contributor.authorĐurčić, Dragan
dc.contributor.authorKočinac, Ljubiša
dc.contributor.authorYildiz, Sevda
dc.date.accessioned2021-11-28T23:02:41Z
dc.date.available2021-11-28T23:02:41Z
dc.date.issued2021
dc.description.abstractWe introduce some notions of variation using the statistical convergence with respect to power series method. By the use of the notions of variation, we prove criterions that can be used to verify convergence without using limit value. Also, some results that give relations between P-statistical variations are studieden_US
dc.description.versionPublisheden_US
dc.identifier.citationDemirci, K., Đurčić, D., Kočinac, L. D., & Yıldız, S. (2021). A theory of variations via P-statistical convergence. Publications de l'Institut Mathematique, 110(124), 11-27.en_US
dc.identifier.doi10.2298/PIM2123011Den_US
dc.identifier.issn0350-1302en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/13775
dc.language.isoenen_US
dc.publisherMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.rightsopenAccess
dc.rights.licenseBY-NC-ND
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcePublications de l'Institut Mathématiqueen_US
dc.subjectpower series methoden_US
dc.subjectstatistical convergenceen_US
dc.subjectregularly varyingen_US
dc.subject$\mathcal O$-regularly varyingen_US
dc.subjectrapidly varyingen_US
dc.titleA THEORY OF VARIATIONS VIA P-STATISTICAL CONVERGENCEen_US
dc.typearticleen_US
dc.type.versionPublishedVersionen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2021-Publication.pdf
Size:
219.47 KB
Format:
Adobe Portable Document Format
Description: