The weak and strong asymptotic equivalence relations and the generalized inverse*
dc.contributor.author | Đurčić, Dragan | |
dc.contributor.author | Nikolić, Rale | |
dc.contributor.author | Torgašev A. | |
dc.date.accessioned | 2021-12-05T06:43:59Z | |
dc.date.available | 2021-12-05T06:43:59Z | |
dc.date.issued | 2011 | |
dc.description.abstract | We discuss the relationship between the weak and strong asymptotic equivalence relations and the generalized inverse in the class A of all nondecreasing unbounded positive functions on a half-axis [a,+∞) (a > 0). As a main result, we prove a proper characterization of the functional class R ∞ ∩ A, where R ∞ is the class of all rapidly varying functions. Also, we prove a characterization of the functional class PI * ∩ A. | en_US |
dc.description.version | Accepted for publishing | en_US |
dc.identifier.doi | 10.1007/s10986-011-9141-5 | en_US |
dc.identifier.issn | 0363-1672 | en_US |
dc.identifier.uri | https://scidar.kg.ac.rs/handle/123456789/13783 | |
dc.language.iso | en | en_US |
dc.rights | openAccess | |
dc.rights.license | BY-NC-ND | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Lithuanian Mathematical Journal | en_US |
dc.title | The weak and strong asymptotic equivalence relations and the generalized inverse* | en_US |
dc.type | article | en_US |
dc.type.version | WorkingVersion | en_US |
Files
Original bundle
1 - 1 of 1