The weak and strong asymptotic equivalence relations and the generalized inverse*

dc.contributor.authorĐurčić, Dragan
dc.contributor.authorNikolić, Rale
dc.contributor.authorTorgašev A.
dc.date.accessioned2021-12-05T06:43:59Z
dc.date.available2021-12-05T06:43:59Z
dc.date.issued2011
dc.description.abstractWe discuss the relationship between the weak and strong asymptotic equivalence relations and the generalized inverse in the class A of all nondecreasing unbounded positive functions on a half-axis [a,+∞) (a > 0). As a main result, we prove a proper characterization of the functional class R ∞ ∩ A, where R ∞ is the class of all rapidly varying functions. Also, we prove a characterization of the functional class PI * ∩ A.en_US
dc.description.versionAccepted for publishingen_US
dc.identifier.doi10.1007/s10986-011-9141-5en_US
dc.identifier.issn0363-1672en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/13783
dc.language.isoenen_US
dc.rightsopenAccess
dc.rights.licenseBY-NC-ND
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceLithuanian Mathematical Journalen_US
dc.titleThe weak and strong asymptotic equivalence relations and the generalized inverse*en_US
dc.typearticleen_US
dc.type.versionWorkingVersionen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2011-LMJ.pdf
Size:
112.02 KB
Format:
Adobe Portable Document Format
Description: